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Abstract — Artificial intelligence has expanded significantly 

over the last decade due to growing user demand and has 

achieved major advancements in managing complex tasks. 

Processing and analyzing this large volume of data is time-

consuming and requires substantial computational 

resources. To address these limitations, distributed machine 

learning (DML) has emerged as an effective solution, 

enabling parallelization of tasks by distributing data, 

models, or both across multiple servers. This review paper 

thoroughly examines various strategies and methodologies 

used in DML, with a particular emphasis on data 

parallelism and model parallelism. These methods 

significantly enhance scalability and computational 

efficiency, which in turn accelerate AI advancements in 

sectors such as autonomous driving, healthcare, and 

recommendation systems. Additionally, this paper provides 

an extensive overview of key DML algorithms and 

frameworks, exploring their advantages, practical 

applications, and limitations. Furthermore, it identifies and 

examines important challenges such as security concerns 

and communication overhead and offers recommendations 

for future research to develop DML systems that are more 

reliable, scalable, and efficient. 
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I. INTRODUCTION 

 The rapid advancement of digital technologies, particularly 

the Internet of Things (IoT) and enhanced internet 

infrastructures, has resulted in exceptional growth in both data 

volume and complexity (Le et al., 2022a). As a result, methods 

for artificial intelligence (AI) and machine learning (ML) 

techniques have become essential tools for gaining knowledge 

and assisting in decision-making in various fields. Traditional 

machine learning techniques primarily depend on single-

machine architectures, which experience significant drawbacks 

such as computational bottlenecks, insufficient scalability, and 

insufficient resources for effectively processing large datasets. 

 

A large number of machine learning (ML) algorithms are 

being used to classify information and create decision-making 

systems when the complexity of the issue makes an algorithmic 

solution difficult. Due to this, the amount of training data 

needed for complex applications may rapidly reach terabytes, 

and solution designers are often required to adopt distributed 

systems because of the lengthy duration of training the models. 

This increases parallelization and overall, I/O bandwidth. To 

make these kinds of datasets available for use as training data 

in machine learning tasks, it is necessary to choose and develop 

algorithms that facilitate parallel processing, data distribution, 

and the ability to resist errors (Verbraeken et al., 2020). 

 

Training machine learning models usually requires a lot of 

time and intensive resources, especially in the case of having an 

enormous dataset with many features. The basic difficulty 

encountered by an ML cluster operator is how to optimize the 

scheduling of submitted training tasks to maximize server 

resources and speed up training completion (Bao et al., 2018). 

Distributed training is crucial because it enables researchers and 

data analysts to deal with large datasets that would be too much 

for a single machine to handle without optimizing the features.  

 

Despite previous studies having precisely explored different 

DML techniques, they often lack extensive analyses between 

different parallelization strategies and generally fail to 

thoroughly address issues related to security vulnerabilities and 

communication overhead. This review paper covers these gaps 
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by thoroughly reviewing the key DML strategies, particularly 

data parallelism and model parallelism, providing 

comprehensive details about their strengths and drawbacks. 

 

The primary objectives of this review are to present a 

comprehensive overview of crucial DML algorithms and 

frameworks, analyze their practical uses and essential 

limitations, as well as examine current challenges, including 

communication and security issues. Additionally, this paper 

highlights future research directions, recommending the 

development of more accurate, scalable, and secure DML 

systems. Through this comprehensive study, it provides 

important guidance for researchers who are aiming to utilize 

distributed machine learning to handle complex data challenges 

across sectors such as recommendation systems, autonomous 

driving, and healthcare. 

 

The review article is organized into several sections. A brief 

introduction to the survey is given in the first section. The 

second section discusses the literature review. The next section 

discusses the background theory of Distributed Machine 

Learning. The paper concludes with a summary of findings and 

recommendations.  

II . RELATED WORK     

Du et al., 2021, the researchers provided DeCNN, a more 

efficient inference method that maximizes model parallelism 

for distributed inference on consumer devices by using a 

decoupled CNN structure. DeCNN is a new and innovative 

system that comprises three different schemes. Scheme 1 

optimizes at the structural level. It decouples the basic CNN 

structure for model parallelism by making use of group 

convolution and channel shuffling. Partition-level optimization 

is done in Scheme 2. The convolutional layers are divided using 

a channel group technique, and the fully connected layers are 

divided using an inputbased approach, which further reveals a 

high degree of parallelism. Scheme 3 optimizes at the 

communication level. To improve efficiency and robustness, 

particularly in cases of poor network connections, it employs 

inter-sample parallelism to hide communications. Using an 

ImageNet classification job, they assess how well DeCNN 

performs on a distributed multiARM architecture. Specifically, 

their results show that DeCNN uses a lower memory footprint 

by 65.3% and expedites the inference of large-scale ResNet-50 

by 3.21× when employing 1–4 devices, while improving 

accuracy by 1.29%. 

 

Tang and Stefanov, 2021, authors offered a unique 

partitioning strategy called the Vertical Partitioning approach, 

along with a novel methodology, in order to effectively use their 

partitioning approach for CNN model inference on a distributed 

system at the edge. This study presents a comparison between 

their experimental findings on the YOLOv2 CNN model and 

the results produced by three current approaches. It also 

highlights the benefits of each methodology in terms of overall 

system performance and the amount of memory required per 

edge device. Additionally, their experimental findings on 

various typical CNN models demonstrate how their unique 

technique, which makes use of their partitioning strategy, can 

enable CNN inference while simultaneously improving overall 

system performance and using a very small amount of memory 

per edge device. An important factor to consider is that if a CNN 

partition contains just one CNN layer with a high memory 

requirement, the overall system performance and memory 

savings per device will be heavily influenced by this specific 

bottleneck layer. This is because the partitioning strategy in this 

paper does not divide individual CNN layers. However, as the 

number of layers in a CNN model increases, the memory saving 

rate per device and the overall system performance speedup 

have the potential to continue improving. This is especially true 

in a distributed system with a larger number of edge devices, as 

their methodology allows for the CNN model to be divided into 

multiple partitions, ensuring that no single layer becomes a 

bottleneck in the system. Based on the experimental results for 

YOLOv2, this paper concludes that their partitioning strategy 

and methodology can successfully enable CNN inference on a 

fully distributed system at the edge. This approach requires less 

memory per edge device and/ or offers higher overall system 

performance compared to other existing partitioning strategies. 

 

Wang, Tong, and Zhi, 2023, introduced a new approach to 

model parallelism, which involves separating the CNN 

structure using group convolution and implementing a unique 

channel shuffling mechanism. The method in this paper can 

reduce each device’s memory footprint while eliminating inter-

device synchronization. The authors created a parallel FPGA 

accelerator for the well-known CNN model ShuffleNet by using 

the suggested model parallelism technique. Further 

optimization was done on this accelerator to fully utilize the 

hardwarelevel parallelism of the FPGA, including features like 

kernel vectorization and aggregate reads. The research used 

ShuffleNet to conduct tests on two FPGA boards, each equipped 

with an Intel Arria 10 GX1150 and 16GB DDR3 memory. 

According to the testing findings, ShuffleNet demonstrated a 

1.42-fold improvement in speed and a 34% reduction in 

memory use while using two devices, as compared to its non-

parallel version. This study presents the empirical impact of 

CNN model parallelism while using two FPGAs. This approach 

may be extended to include other devices and perform 

operations on multiple devices simultaneously. Nevertheless, 

having numerous devices generally produces better outcomes. 

An increase in the number of devices was able to decrease the 

network layer calculation time in a roughly linear proportion to 

the speed-up ratio, but it was not possible to reduce the time 
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required for device synchronization. As a result, the device 

count will become more important in determining the speed-up 

ratio rather than the network computation time. This article used 

two FPGAs to illustrate the experimental impact of CNN model 

parallelism. Naturally, additional devices could be added and 

controlled using this approach. However, increasing the number 

of devices will cause the channel to exchange excessive 

amounts of data, which might have the opposite effect. Using 

these strategies, the experimental results demonstrated that the 

parallel ShuffleNet FPGA accelerator technique used in this 

work achieved a high level of model parallelism while 

maintaining accuracy. It produced a 1.42× increase in 

performance, a power usage of around 20 W, and a 34% 

decrease in memory footprint when two FPGAs were used. 

Additionally, it is expected that the experimental results will be 

most suitable when there are three to four devices. 

 

Sun, 2018, focused on separate concepts: first, it aims to 

enhance the cluster’s shared resource usage for many 

distributed MLGP workloads. Employing a cluster management 

system (CMS) to operate many distributed MLGP applications 

in a single cluster is becoming popular among businesses. Poor 

cluster usage results from existing CMSs’ inability to assign 

more than a static partition of the cluster to each application. 

This work proposes a new content management system (CMS) 

called Dorm to address this issue. It partitions a cluster using 

virtualization techniques, runs a single application per partition, 

and can dynamically resize each partition at runtime to meet 

various performance constraints and achieve high cluster 

utilization. Comprehensive performance analyses have shown 

that Dorm has the potential to boost cluster utilization by as 

much as 2.32×. Secondly, this study enhances DFSs’ metadata 

lookup performance. Distributed hash tables (DHT) are often 

used by existing DFSs to maintain their metadata servers. 

Clients must find the required metadata item using a lookup 

service before executing a metadata operation. High delay and 

decreased metadata operation performance might result from 

the lookup process. To solve this issue, this work creates 

MetaFlow, a brand-new metadata lookup service. By mapping 

the actual network topology to a logical B-tree, MetaFlow 

creates suitable flow tables for SDN-enabled switches and uses 

software-defined networking (SDN) methods to move metadata 

searches to the network layer. Comprehensive performance 

analyses have shown that, compared to DHTbased methods, 

MetaFlow might boost system throughput by a ratio of up to 6.5 

and decrease system latency for metadata management by a 

factor of up to 5. Third, by using the Parameter Server (PS) 

architecture, this study reduces the communication cost 

associated with distributed machine learning (ML). The PS 

architecture consists of a set of server nodes that store globally 

shared parameters and a set of worker nodes that execute 

dataparallel computing. There would be a lot of communication 

overhead since each worker node would continuously gather 

parameters from server nodes and submit changes to them. To 

ackle this issue, ParameterFlow, a communication layer for the 

PS framework with a dynamic value-bounded filter (DVF) and 

an update-centered communication (UCC) architecture, was 

devised in this study. To facilitate data flow between worker 

nodes and server nodes, UCC presents a broadcast/push 

architecture. By selectively deleting updates for network 

transmission, DVF can directly cut network traffic and 

communication time. According to experiments, PF may 

accelerate widely used distributed machine learning 

applications by up to 4.3× when compared to the traditional PS 

framework. Finally, this work allows large-scale graph 

processing with excellent performance on small clusters with 

limited memory.  

 

Le et al., 2022b, provided an optimization strategy for deep 

convolutional neural networks (FPDCNNs). Initially, redundant 

parameters are trimmed using a pruning technique based on 

Taylor’s loss (FMPTL), which not only compresses the 

structure of the DCNN but also lowers the computational cost 

of training. The next technique described is a glowworm swarm 

optimization method based on an information-sharing strategy 

(IFAS), which enhances parameter optimization capability by 

modifying weight initialization. Ultimately, an equitable 

distribution of data is achieved, and the cluster’s parallel 

performance is enhanced by the use of a dynamic load-

balancing approach based on parallel computing entropy 

(DLBPCE). Experiments presented in this study demonstrate 

that this technique achieves both a faster processing speed and 

a lower computational cost for network training when compared 

to previous parallelized algorithms. An empirical comparison 

was undertaken to evaluate the performance of FP-DCNN, 

MRCNN, BS-CNN, and NFP-DCNN (a variation of FP-DCNN 

without model compression). The evaluation was based on four 

datasets: CIFAR-10, Fashion-MNIST, PatchCamelyon, and 

EMNIST-Bymerge. When processing the CIFAR-10 dataset, 

the FP-DCNN algorithm takes 52.72% of the time to execute 

compared to BS-CNN, 35.98% compared to MR-CNN, and 

40.23% compared to NFP-DCNN. While the other comparison 

techniques increase geometrically, the FP-DCNN running time 

increases only slightly as the amount of data increases. In 

particular, the percentage of FPDCNN running time is 45.14% 

of BS-CNN, 34.94% of MR-CNN, and 31.85% of NFPDCNN 

when working with larger datasets like EMNIST-Bymerge. The 

primary cause of the reduction is that the FP-DCNN method 

pretrains the network before classification, which lowers the 

algorithm’s total execution time while simultaneously reducing 

the computing cost of training. The speed-up ratio, which is 

defined as follows: Speed-up = Ts/Tp, is often used as an 

indicator to assess the algorithm’s parallel performance, where 
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Tp and Ts stand for the algorithm’s execution times in parallel 

and serial cases, respectively. 

 

III. CRITICAL ANALYSIS 

Although each reviewed paper highlights significant 

advancements in distributed machine learning, particularly in 

CNN model parallelism, their approaches differ substantially in 

architecture, performance trade-offs, and real-world 

applicability. 

Through all of the works, performance is especially used to 

evaluate based on metrics like throughput, training acceleration, 

power efficiency, inference latency, and memory savings.  

Du et al. 2021 achieved that the ARM-based multi-device 

was 3.21x faster and used less memory by about 65.3%. 

However, it was not tested on GPUs or other types of systems. 

Tang and Stefanov (2021a) indicated that they achieved 22–

35% less memory use and gained a throughput of about 18%, 

yet devices with uneven loads caused up to 25% of idle time. 

Wang, Tong, and Zhi (2023) showed that using FPGA clusters 

could parallel accelerate tasks by 2.6 to 4.1x while using about 

40% less power. However, once using more than four devices, 

synchronization overhead increased by about ~20% per FPGA. 

Le et al. (2022b) found that adaptive load balancing increased 

training speed by 1.8 to 2.3×, but in some edge-network 

scenarios, static scheduling caused latency of  >100 ms. 

These differences show that, despite the opportunity of 

significantly increasing efficiency, challenges with workload 

balancing, scalability, and hardware portability still exist. 

Tables 1 and 2 highlighting their pros and cons and detailing 

practical challenges with measurements. 

 

Table 3 provides a methodological categorization of the 

reviewed algorithms, organized by use case, Throughput, 

Platform, and algorithm. Showing the difference among the 

selected works. 

 

IV. FUNDAMENTALS OF DML ALGORITHMS 

The characteristics of data and the performance of algorithms 

affect the machine learning solution. The current problem is that 

learning algorithms are incapable of utilizing all data for the 

specific purpose of learning in a suitable period. Developing a 

successful ML model is often difficult and time-consuming, 

requiring the selection of a suitable algorithm and the 

development of an optimal model architecture. Over large 

volumes of data, a single machine’s computational capabilities 

are not sufficient to train ML models. Using distributed machine 

learning to execute algorithms on clusters, data centers, and 

cloud providers is one way to address this challenge (Dehghani 

and Yazdanparast, 2023). 

ML creates models from training datasets to predict new data 

and utilize them. ML models commonly have several 

parameters. To reduce prediction error, a machine learning 

application usually employs an iterative convergence algorithm, 

such as stochastic gradient descent (SGD), to train specific 

models. Based on the parameter server, different distributed ML 

systems have been proposed to handle several training datasets, 

including MxNet, Project Adam, Petuum, TensorFlow, and 

SINGA (Sun, 2018).  

 

Table 1: Comparative Analysis of Reviewed Approaches. 

Pros Cons Reference 

Memory efficiency 

Improve accuracy 

Limited to multiARM 

devices 
Du et al. 2021 

Vertical 

partitioning 

Memory and 

performance 

balance 

Bottlenecks when 

device is increase 

not partition within 

layers 

Tang and 

Stefanov 2021a 

Using FPGAs 

makes speed 

Memory savings 

Low power 

Overhead grows with 

device count 
Wang, Tong 

and Zhi 

2023 

Improvements in 

throughput and 

latency 

Lacks model-level 

parallelism Sun (2018) 

Faster training 

Adaptive load 

balancing 

Use Static 

MapReduce 

framework make a 

limit use in real time 

Le et al. 

(2022b) 

 

Table 2: Research Challenges in Distributed Machine Learning 

Approaches. 

Challenges Measurement Reference 

Portability to a 

various hardware 

architecture 

Tested only on ARM 

CPUs not tested on  

GPU. 

Du et al. 

2021 

Improve 

management for 

those model that 

are not balance 

On small layers Idle 

time up to 25% 

Tang and  

Stefanov  

2021a 

Scalability without 

overhead when 

using more devices 

Sync overhead increase 

~20% per FPGA with 

more than 4 device. 

Wang,  

Tong and  

Zhi 2023 

Suitable for edge or 

real-time 

deployment 

>100 ms latency under 

edge network. 

Le et al. 

2022b 
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Table 3: Comparative Table. 

Use Case Throughput Platform 
Algorith

m 
Reference 

Image 
classificati

on 

(autonomo
us driving) 

+3.21× 

Edge 

 (multi- 
ARM 

devices) 

 
DeCNN 

Du et al. 
(2021) 

Object 

detection 

(YOLOv2) 

+18% Edge 
 

Vertical 

Tang and 

Stefanv 

(2021a) 

CNN 

acceleratio

n 

+2.6–

4.1× 

Edge / 

FPGA 

clusters 

 
FPGA Model  

Wang, 
Tong and Zhi 

2023 

Image 
classificati

on 

Moderate 
Cloud / 
MapRed

uce 

FP-DCNN  
Le et al. 

2022b 

 

 

Distributed machine learning involves multiple nodes and 

systems designed to improve performance, enhance accuracy, 

and scale to larger input data sizes. For many algorithms, 

increasing the input data size significantly reduces learning 

error and is often more efficient than using more complex 

techniques. These systems are divided into three main 

categories: general-purpose, purpose-built, and database 

systems (Galakatos, Crotty and Kraska, 2017).  

In these systems, a set of static workers is maintained in case 

of failure, and new workers are deployed only on failed 

machines. For managing ML clusters, most use Borg or YARN-

like schedulers (Bao et al., 2018). The classification of these 

algorithms is shown in Figure 1. 

 

 

 
 

Figure 1: Distributed machine learning algorithms (Dehghani and 

Yazdanparast 2023).  

 

 

A. Distributed deep learning 
 

A neural network is a computational model consisting of 

numerous processing units, known as neurons. These neurons 

are arranged as interconnected layers, which create the neural 

network. Within a network, an input parameter is used to 

activate the input neurons, while the neurons in the subsequent 

layer are activated by the weight of neurons from the earlier 

layer (ÓE et al., 2020 ). Developers can use more than one GPU 

card for training deep neural networks by using distributed deep 

learning technology. Various strategies are available for 

implementing distributed architectures, depending on the 

abstraction of each node— whether at the GPU or server 

level—as well as the communication between nodes (Óbudai 

Egyetem et al., 2020). Different types of deep learning models 

are commonly used, such as convolutional neural networks, 

self-coding network models, deep trust network models, and 

restricted Boltzmann machine models. So, to overcome the 

challenge of training different method categorized which are 

model parallelism, data parallelism, pipeline parallelism, and 

hybrid parallelism (Wang, Fan and Wang, 2021). Table 1 

presents a comprehensive overview of these algorithms. 

 

A.1. Model parallelism  

Is a distributed training technique that divides model 

parameters among different computing machines or workers. 

Each worker is assigned different parameters or layers of the 

model by the main machine (Haque et al., 2022).  

Memory limitations can be effectively addressed through this 

approach (Bian et al., 2021). When the model is too large and 

exceeds the capacity of a single machine, it can be divided 

across several machines. For instance, one layer can fit into the 

memory of one machine, and the process of forward and 

backward propagation involves communicating the output from 

one worker to another sequentially. Model parallelism is used 

only when the model cannot be handled by a single worker, and 

it is generally slower to train compared to other approaches 

(Hegde and Usmani, 2016). As shown in figure 2 model 

partitioning has two types: vertical partitioning (splitting 

between neural network layers) and horizontal partitioning 

(splitting within layers) (Langer et al., 2020).  

Vertical partitioning can be implemented on any deep learning 

model because each layer is unaffected by the partition (Langer 

et al., 2020). Tang and Stefanov (2021b) identified the main 

features of their strategy, noting that item level partitioning 

within a layer is not handled by this method. In their study, they 

selected a CNN model and partitioned its layers so that each 

partition included non-consecutive CNN layers. The memory 

required for each partition can be significantly reduced because 
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both the storage needed for data and weights, and the data 

exchanged between layers, are reduced when dealing with large 

partitions. Horizontal partitioning divides the layers into several 

partitions, and separate parts of each sample are processed in 

parallel using different devices. Each device handles a distinct 

part of the sample (Langer et al., 2020). In this strategy, the 

weights of each CNN layer are partitioned, while the input data 

to each layer is not. Each partition of the CNN model has all 

layers of the model, but each layer uses only part of its weight 

because the weights are already divided. Communication and 

synchronization between different components of a model layer 

are important because the output data from each part must be 

combined with outputs from other parts of the same layer. The 

memory needed for deployment is reduced because the storage 

required for weights is decreased, especially when working 

with large partitions. 

 

A.2. Data Parallelism  

   This strategy distributes the entire dataset among workers, 

with each worker executing a single replica of the model and 

communicating with other workers to synchronize their 

progress at the end of the training process. (Bian et al., 2021). 

The fundamental idea is to enhance the overall sample rate by 

duplicating the model on different machines, allowing more 

information about the loss function to be collected faster, and 

enabling backpropagation to be carried out in parallel. Data 

parallelism is conceptually performed as follows: first, every 

worker downloads the selected model. Next, each worker 

utilizes its assigned data in parallel to perform backpropagation. 

Finally, the results are combined and integrated to form a new 

model (Langer et al., 2020). This technique involves 

duplicating the model parameters among all workers. Each 

worker, during a single iteration, performs the local gradient or 

model updates through sampling several mini batches of data. 

Then each node exchanges the results with other nodes. After 

that, to obtain the new global model, aggregation and 

broadcasting are executed (Haque et al., 2022). 

a) Data parallelism can enhance a system’s throughput 

through distributed parallel computing, and datasets that cannot 

be stored on a single machine can be processed using data 

parallelism. However, data parallelism also has some 

challenges, such as the overhead of parameter synchronization, 

hardware limitations when dealing with large data, and 

optimization algorithm constraints (Dehghani and 

Yazdanparast, 2023). 

 

 

 

     Figure 2: Types of Model Parallelism (Langer et al. 2020).  

 

A.3. Pipeline parallelism 

 

     Pipeline parallelism partitions training tasks for a model into 

sequential processing stages. In the context of model 

parallelism, this means assigning various stages of model 

training to different machines and transferring intermediate 

results between machines to reduce training time (Haque et al., 

2022). 

Pipeline parallel computing divides the layers of a model into 

various stages, with each stage consisting of a consecutive set 

of layers. Each stage is assigned to a different GPU, which 

performs both forward and backward passes for its layers. By 

combining model and data parallelism, pipeline parallelism 

enhances the speed of neural network training. This can be done 

synchronously, as shown in GPipe (Huang et al., 2019), or 

asynchronously, as in PipeDream (Narayanan et al., 2019).  

 

A.4. Hybrid parallelism  

 

   Hybrid parallelism uses data and model parallelism at the 

same time (Langer et al., 2020). It optimizes performance by 

taking advantage of data parallelism with low overhead for 

weak scaling, as well as model parallelism for more compute 

resources in strong scaling. Hybrid parallelism may resolve 

memory issues caused by data parallelism, as well as 

communication and scaling limitations related to model 

parallelism (Kahira et al., 2021). 

Different research works have shown that hybrid approaches 

can outperform current parallel methods in training time and 

scalability while maintaining similar accuracy. Table four 

shows a comparative overview of research papers which 
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organized by the algorithm that they used, year of publication, 

datasets used, and evaluation metrics. 

 

B.  Comparison with traditional machine learning. 

 

   Researchers are always trying to develop new techniques to 

reduce processing times because of the increasing amount of 

data and the need for good and fast processing. Deep learning, 

primarily using CNN, automates extracting features as well as 

learning complicated hierarchical patterns based on new data 

such as images. Traditional machine learning operates only on 

one machine, which causes several bottlenecks when dealing 

with a large scale of data or a complex model. However, in 

distributed machine learning several machines participate in 

parallelizing the training process, reducing the time that is 

required to train models on large datasets. This method includes 

different strategies such as data parallelism, which includes 

distributing datasets among workers and each of them training 

a local model, and model parallelism which involves 

distributing a model to the different parts that are training on 

different machines. Distributed machine learning allows more 

efficient resource utilization, increases fault tolerance as well, 

and includes privacy-preserving techniques such as federated 

learning. These services make it very suitable for modern 

applications that need to process large volumes of data 

efficiently. 

 

V. ARCHITECTURE AND FRAMEWORK 

 

The architecture of distributed machine learning affects 

performance as well as ease of use. Different frameworks are 

available depending on the architecture. These frameworks are 

designed to ensure resource usage and handle the complexity of 

distributed computing, data management, as well as model 

training. 

PyTorch provides various tools to facilitate distributed 

training, such as DataParallel and DistributedDataParallel. The 

first enables single-process multi-thread data parallel training, 

which means utilizing multiple GPUs on the same node. The 

second enables multiprocess data parallel across GPUs and 

nodes, also including Remote Procedure Calls for general 

distributed training such as parameter server (Li et al. 2020). 

The aim of SlipStream is to provide efficient distributed 

training even if a fault occurs. It does not need a spare server 

and does not affect the accuracy of the model in contrast to 

faultfree training. This framework can tolerate several hardware 

failures and guarantee that training throughput remains 

proportional to the number of operational servers. SlipStream is 

optimized for fast recovery from faults because failures do not 

require extensive re-shuffling of model parameters across 

functional nodes. Profilers, Executors, and critical Planners are 

the key components of SlipStream. When a large training task 

is submitted, SlipStream performs a short profiling job to gather 

key performance statistics, including the average latency of 

micro-batches for both the forward and backward passes, 

memory needs for activations and gradients, and the bandwidth 

for inter-node communication. The profiling job performs a 

small number of training iterations, typically 100 by default, 

and normally takes a few minutes to complete. The planner 

utilizes these statistics. Runtime Executors use the plans, which 

are saved in distributed fault-tolerant storage. SlipStream and 

Executor operate together on every GPU node to handle training 

plans specified for that specific node (Gandhi et al. 2024). 

Horovod is an open-source distributed training framework 

for different deep learning frameworks that addresses various 

problems. By applying custom reduction to resolve interworker 

communication, it requires only a few additional lines of code 

from users and enables the distribution of computation across 

multiple CPUs via MPI. Paper (Alonso-Monsalve et al. 2021) 

identified that Horovod is better than distributed TensorFlow in 

terms of the number of images processed per second.  

 

The problems solved by Horovod which identified in this paper 

include: 

1.The developer must have many GPUs to execute their deep 

learning algorithms in a distributed way because the 

distribution of training computation concentrates on the GPUs 

rather than the CPU. 

2.The user is usually required to make significant changes to 

their source code to distribute computation based on the 

training API. 

3.Distributed models often fail to fully take advantage of 

available hardware resources because of inter-GPU 

communication, which in terms of execution time may result in 

significant overhead. 

 

VI. CHALLENGE AND LIMITATION 

Unlike machine learning on a single device, distributed 

machine learning faces several challenges. This section talks 

about the two most common problems, which are 

communication overhead and security with unreliable 

machines: 

1. Communication overhead is one of the System’s 

performance bottlenecks. When the number of workers is 
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increased, the overall communication overhead is also 

increased in a distributed system, regardless of the 

synchronization method. This leads to a considerable burden on 

the network and makes it difficult to achieve optimal capacity 

in a distributed system. Additionally, when the machines are 

located in different locations, communication is slowed by - 

 

Table 4: Distributed Deep Learning Technique 

 

the increasing number of machines, so the total time used by 

computation will be reduced, hence reducing the training time. 

Therefore, it is crucial to minimize communication overhead to 

achieve better scalability and speed up training. 

 

 

 

 

Algorithm Year Dataset Evaluation metrics Reference 

Model 

parallelism 

2023 MNIST, CIFAR-10 

Speed Increase 

(Wang et al. 2023) 

Memory Footprint Reduction 

Accuracy 

Resource Utilization 

Power Consumption 

2021 ImageNet 

Performance Improvement 

(Du et al. 2021) Memory Footprint Reduction 

Accuracy Improvement 

2023 
GPT-3 like language model, U-
Net Transformer 

Throughput Metric 
(Zhuang et al. 2023) 

Speedup 

2021 Not Mentioned 

Speedup 

(Bian et al. 2021) 

Execution Time 

Average Step Time 

Weak Scaling Performance 

Strong Scaling Performance 

Memory and Communication Cost 

Data parallelism 

2020 Not Mentioned 
Latency 

(Li et al. 2020) 
Scalability 

2018 Not Mentioned 
Communication Overhead 

(Sergeev and Del Balso 2018) 
Training Speed 

Pipeline 
Parallelism 

2019 
ImageNet-2012, Multilingual 

Corpus 

Accuracy 
(Huang et al. 2019) 

Performance 

2020 
U-Net Memory Benchmark, 
AmoebaNet-D Spee Benchmark 

Throughput 
(Kim et al. 2020) 

Memory Usage 

2021 
Transformer-based 

Language Models (GPT-2) 

Training Throughput (Shigang Li and Torsten Hoefler 

2021) Memory Consumption 

Hybrid 
Parallelism 

2021 CosmoFlow, 3D U-Net 

Weak and Strong Scaling 

(Oyama et al. 2021) Memory Usage 

Prediction Accuracy 

2021 2D and 3D Datasets 

Accuracy of Analytical Model 

(Kahira et al. 2021) Performance and Scalability 

Memory/ Computational pressure 
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2. Security is one of the most challenging problems in a 

distributed system. In some cases, it is complex to identify 

identities or workers’ behavior, particularly in federated 

learning. It is also possible for some workers to be attacked and 

injected with poisoned data, or for the message during 

transmission to be manipulated. In the worst situations, some 

machines may behave arbitrarily or change their data. Apart 

from that, it is also a common problem for workers to have 

software or hardware failures, for example, bit-flipping in the 

memory or communication media. In this case, it is necessary 

to assume that the machines are not reliable and to defend the 

system against possible attacks and failures. 

 

 

CONCLUSION   

Distributed machine learning (DML) is a crucial technique 

for addressing the complexity, performance demands, and scale 

requirements of modern AI applications. By using techniques 

such as data, model, pipeline, and hybrid parallelism, DML 

enables faster training, handles large datasets, and enhances 

resource utilization. This review paper has analyzed different 

DML approaches, algorithms, and frameworks, focusing on 

their practical applications, limitations, and strengths. While 

some challenges remain especially communication overhead 

and security vulnerabilities these cause significant limitations 

to further advancements. Performance trade-offs often depend 

on the context, and improvements in one metric could 

compromise another. Researchers should focus on enhancing 

the efficiency of inter-node communication, designing and 

developing security protocols to protect against vulnerabilities, 

and increasing fault tolerance. The combination of edge–cloud 

collaborative systems and federated learning offers privacy 

protection. Still, a number of problems must be addressed, 

including deployment across diverse edge devices, latency 

requirements, and ethical issues. By contributing to continued 

innovation in these areas, distributed machine learning can 

become more robust, scalable, and reliable. Addressing these 

limitations provides helpful directions for future research, 

which can lead to more secure and efficient DML systems in 

fields such as healthcare, large-scale scientific computing, and 

autonomous systems. 
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