
 https://doi.org/10.54809/ga11a.2025.003

GALLA p_ISSN: 3081-068X. e_ISSN: 3081-0698X

20

Distributed Machine Learning Algorithms: Related Work

Nashma Taha Muhammed¹*, Sarkar Hasan Ahmed²

¹Department of Information Technology, Technical College of Informatics, Sulaymaniyah, Iraq

² Department of Computer Networks, Technical College of Informatics, Sulaymaniyah, Iraq

Abstract — Artificial intelligence has expanded significantly

over the last decade due to growing user demand and has

achieved major advancements in managing complex tasks.

Processing and analyzing this large volume of data is time-

consuming and requires substantial computational

resources. To address these limitations, distributed machine

learning (DML) has emerged as an effective solution,

enabling parallelization of tasks by distributing data,

models, or both across multiple servers. This review paper

thoroughly examines various strategies and methodologies

used in DML, with a particular emphasis on data

parallelism and model parallelism. These methods

significantly enhance scalability and computational

efficiency, which in turn accelerate AI advancements in

sectors such as autonomous driving, healthcare, and

recommendation systems. Additionally, this paper provides

an extensive overview of key DML algorithms and

frameworks, exploring their advantages, practical

applications, and limitations. Furthermore, it identifies and

examines important challenges such as security concerns

and communication overhead and offers recommendations

for future research to develop DML systems that are more

reliable, scalable, and efficient.

Keywords: Distributed Machine Learning, Deep Learning,

Model Parallelism, Data Parallelism.

Galla-The Scientific Journal of KISSR Vol. I, No. 1

(2026), Article ID: Galla.12181. 10 pages

DOI: 10.54809/ga11a.2025.003. Received: 12 July,

2025; Accepted: 07 September, 2025 Regular
research paper; Published: 25 January, 2026.

*Corresponding author’s e-mail: nashma.taha.m@spu.edu.iq.

Copyright © 2026. Nashma Taha Muhammed¹, Sarkar Hasan Ahmed².

This is an open access article distributed under the Creative Commons

Attribution License (CC BY-NC-SA 4.0).

I. INTRODUCTION

 The rapid advancement of digital technologies, particularly

the Internet of Things (IoT) and enhanced internet

infrastructures, has resulted in exceptional growth in both data

volume and complexity (Le et al., 2022a). As a result, methods

for artificial intelligence (AI) and machine learning (ML)

techniques have become essential tools for gaining knowledge

and assisting in decision-making in various fields. Traditional

machine learning techniques primarily depend on single-

machine architectures, which experience significant drawbacks

such as computational bottlenecks, insufficient scalability, and

insufficient resources for effectively processing large datasets.

A large number of machine learning (ML) algorithms are

being used to classify information and create decision-making

systems when the complexity of the issue makes an algorithmic

solution difficult. Due to this, the amount of training data

needed for complex applications may rapidly reach terabytes,

and solution designers are often required to adopt distributed

systems because of the lengthy duration of training the models.

This increases parallelization and overall, I/O bandwidth. To

make these kinds of datasets available for use as training data

in machine learning tasks, it is necessary to choose and develop

algorithms that facilitate parallel processing, data distribution,

and the ability to resist errors (Verbraeken et al., 2020).

Training machine learning models usually requires a lot of

time and intensive resources, especially in the case of having an

enormous dataset with many features. The basic difficulty

encountered by an ML cluster operator is how to optimize the

scheduling of submitted training tasks to maximize server

resources and speed up training completion (Bao et al., 2018).

Distributed training is crucial because it enables researchers and

data analysts to deal with large datasets that would be too much

for a single machine to handle without optimizing the features.

Despite previous studies having precisely explored different

DML techniques, they often lack extensive analyses between

different parallelization strategies and generally fail to

thoroughly address issues related to security vulnerabilities and

communication overhead. This review paper covers these gaps

mailto:nashma.taha.m@spu.edu.iq

 https://doi.org/10.54809/ga11a.2025.003

GALLA p_ISSN: 3081-068X. e_ISSN: 3081-0698X
21

by thoroughly reviewing the key DML strategies, particularly

data parallelism and model parallelism, providing

comprehensive details about their strengths and drawbacks.

The primary objectives of this review are to present a

comprehensive overview of crucial DML algorithms and

frameworks, analyze their practical uses and essential

limitations, as well as examine current challenges, including

communication and security issues. Additionally, this paper

highlights future research directions, recommending the

development of more accurate, scalable, and secure DML

systems. Through this comprehensive study, it provides

important guidance for researchers who are aiming to utilize

distributed machine learning to handle complex data challenges

across sectors such as recommendation systems, autonomous

driving, and healthcare.

The review article is organized into several sections. A brief

introduction to the survey is given in the first section. The

second section discusses the literature review. The next section

discusses the background theory of Distributed Machine

Learning. The paper concludes with a summary of findings and

recommendations.

II . RELATED WORK

Du et al., 2021, the researchers provided DeCNN, a more

efficient inference method that maximizes model parallelism

for distributed inference on consumer devices by using a

decoupled CNN structure. DeCNN is a new and innovative

system that comprises three different schemes. Scheme 1

optimizes at the structural level. It decouples the basic CNN

structure for model parallelism by making use of group

convolution and channel shuffling. Partition-level optimization

is done in Scheme 2. The convolutional layers are divided using

a channel group technique, and the fully connected layers are

divided using an inputbased approach, which further reveals a

high degree of parallelism. Scheme 3 optimizes at the

communication level. To improve efficiency and robustness,

particularly in cases of poor network connections, it employs

inter-sample parallelism to hide communications. Using an

ImageNet classification job, they assess how well DeCNN

performs on a distributed multiARM architecture. Specifically,

their results show that DeCNN uses a lower memory footprint

by 65.3% and expedites the inference of large-scale ResNet-50

by 3.21× when employing 1–4 devices, while improving

accuracy by 1.29%.

Tang and Stefanov, 2021, authors offered a unique

partitioning strategy called the Vertical Partitioning approach,

along with a novel methodology, in order to effectively use their

partitioning approach for CNN model inference on a distributed

system at the edge. This study presents a comparison between

their experimental findings on the YOLOv2 CNN model and

the results produced by three current approaches. It also

highlights the benefits of each methodology in terms of overall

system performance and the amount of memory required per

edge device. Additionally, their experimental findings on

various typical CNN models demonstrate how their unique

technique, which makes use of their partitioning strategy, can

enable CNN inference while simultaneously improving overall

system performance and using a very small amount of memory

per edge device. An important factor to consider is that if a CNN

partition contains just one CNN layer with a high memory

requirement, the overall system performance and memory

savings per device will be heavily influenced by this specific

bottleneck layer. This is because the partitioning strategy in this

paper does not divide individual CNN layers. However, as the

number of layers in a CNN model increases, the memory saving

rate per device and the overall system performance speedup

have the potential to continue improving. This is especially true

in a distributed system with a larger number of edge devices, as

their methodology allows for the CNN model to be divided into

multiple partitions, ensuring that no single layer becomes a

bottleneck in the system. Based on the experimental results for

YOLOv2, this paper concludes that their partitioning strategy

and methodology can successfully enable CNN inference on a

fully distributed system at the edge. This approach requires less

memory per edge device and/ or offers higher overall system

performance compared to other existing partitioning strategies.

Wang, Tong, and Zhi, 2023, introduced a new approach to

model parallelism, which involves separating the CNN

structure using group convolution and implementing a unique

channel shuffling mechanism. The method in this paper can

reduce each device’s memory footprint while eliminating inter-

device synchronization. The authors created a parallel FPGA

accelerator for the well-known CNN model ShuffleNet by using

the suggested model parallelism technique. Further

optimization was done on this accelerator to fully utilize the

hardwarelevel parallelism of the FPGA, including features like

kernel vectorization and aggregate reads. The research used

ShuffleNet to conduct tests on two FPGA boards, each equipped

with an Intel Arria 10 GX1150 and 16GB DDR3 memory.

According to the testing findings, ShuffleNet demonstrated a

1.42-fold improvement in speed and a 34% reduction in

memory use while using two devices, as compared to its non-

parallel version. This study presents the empirical impact of

CNN model parallelism while using two FPGAs. This approach

may be extended to include other devices and perform

operations on multiple devices simultaneously. Nevertheless,

having numerous devices generally produces better outcomes.

An increase in the number of devices was able to decrease the

network layer calculation time in a roughly linear proportion to

the speed-up ratio, but it was not possible to reduce the time

 https://doi.org/10.54809/ga11a.2025.003

GALLA p_ISSN: 3081-068X. e_ISSN: 3081-0698X
22

required for device synchronization. As a result, the device

count will become more important in determining the speed-up

ratio rather than the network computation time. This article used

two FPGAs to illustrate the experimental impact of CNN model

parallelism. Naturally, additional devices could be added and

controlled using this approach. However, increasing the number

of devices will cause the channel to exchange excessive

amounts of data, which might have the opposite effect. Using

these strategies, the experimental results demonstrated that the

parallel ShuffleNet FPGA accelerator technique used in this

work achieved a high level of model parallelism while

maintaining accuracy. It produced a 1.42× increase in

performance, a power usage of around 20 W, and a 34%

decrease in memory footprint when two FPGAs were used.

Additionally, it is expected that the experimental results will be

most suitable when there are three to four devices.

Sun, 2018, focused on separate concepts: first, it aims to

enhance the cluster’s shared resource usage for many

distributed MLGP workloads. Employing a cluster management

system (CMS) to operate many distributed MLGP applications

in a single cluster is becoming popular among businesses. Poor

cluster usage results from existing CMSs’ inability to assign

more than a static partition of the cluster to each application.

This work proposes a new content management system (CMS)

called Dorm to address this issue. It partitions a cluster using

virtualization techniques, runs a single application per partition,

and can dynamically resize each partition at runtime to meet

various performance constraints and achieve high cluster

utilization. Comprehensive performance analyses have shown

that Dorm has the potential to boost cluster utilization by as

much as 2.32×. Secondly, this study enhances DFSs’ metadata

lookup performance. Distributed hash tables (DHT) are often

used by existing DFSs to maintain their metadata servers.

Clients must find the required metadata item using a lookup

service before executing a metadata operation. High delay and

decreased metadata operation performance might result from

the lookup process. To solve this issue, this work creates

MetaFlow, a brand-new metadata lookup service. By mapping

the actual network topology to a logical B-tree, MetaFlow

creates suitable flow tables for SDN-enabled switches and uses

software-defined networking (SDN) methods to move metadata

searches to the network layer. Comprehensive performance

analyses have shown that, compared to DHTbased methods,

MetaFlow might boost system throughput by a ratio of up to 6.5

and decrease system latency for metadata management by a

factor of up to 5. Third, by using the Parameter Server (PS)

architecture, this study reduces the communication cost

associated with distributed machine learning (ML). The PS

architecture consists of a set of server nodes that store globally

shared parameters and a set of worker nodes that execute

dataparallel computing. There would be a lot of communication

overhead since each worker node would continuously gather

parameters from server nodes and submit changes to them. To

ackle this issue, ParameterFlow, a communication layer for the

PS framework with a dynamic value-bounded filter (DVF) and

an update-centered communication (UCC) architecture, was

devised in this study. To facilitate data flow between worker

nodes and server nodes, UCC presents a broadcast/push

architecture. By selectively deleting updates for network

transmission, DVF can directly cut network traffic and

communication time. According to experiments, PF may

accelerate widely used distributed machine learning

applications by up to 4.3× when compared to the traditional PS

framework. Finally, this work allows large-scale graph

processing with excellent performance on small clusters with

limited memory.

Le et al., 2022b, provided an optimization strategy for deep

convolutional neural networks (FPDCNNs). Initially, redundant

parameters are trimmed using a pruning technique based on

Taylor’s loss (FMPTL), which not only compresses the

structure of the DCNN but also lowers the computational cost

of training. The next technique described is a glowworm swarm

optimization method based on an information-sharing strategy

(IFAS), which enhances parameter optimization capability by

modifying weight initialization. Ultimately, an equitable

distribution of data is achieved, and the cluster’s parallel

performance is enhanced by the use of a dynamic load-

balancing approach based on parallel computing entropy

(DLBPCE). Experiments presented in this study demonstrate

that this technique achieves both a faster processing speed and

a lower computational cost for network training when compared

to previous parallelized algorithms. An empirical comparison

was undertaken to evaluate the performance of FP-DCNN,

MRCNN, BS-CNN, and NFP-DCNN (a variation of FP-DCNN

without model compression). The evaluation was based on four

datasets: CIFAR-10, Fashion-MNIST, PatchCamelyon, and

EMNIST-Bymerge. When processing the CIFAR-10 dataset,

the FP-DCNN algorithm takes 52.72% of the time to execute

compared to BS-CNN, 35.98% compared to MR-CNN, and

40.23% compared to NFP-DCNN. While the other comparison

techniques increase geometrically, the FP-DCNN running time

increases only slightly as the amount of data increases. In

particular, the percentage of FPDCNN running time is 45.14%

of BS-CNN, 34.94% of MR-CNN, and 31.85% of NFPDCNN

when working with larger datasets like EMNIST-Bymerge. The

primary cause of the reduction is that the FP-DCNN method

pretrains the network before classification, which lowers the

algorithm’s total execution time while simultaneously reducing

the computing cost of training. The speed-up ratio, which is

defined as follows: Speed-up = Ts/Tp, is often used as an

indicator to assess the algorithm’s parallel performance, where

 https://doi.org/10.54809/ga11a.2025.003

GALLA p_ISSN: 3081-068X. e_ISSN: 3081-0698X
23

Tp and Ts stand for the algorithm’s execution times in parallel

and serial cases, respectively.

III. CRITICAL ANALYSIS

Although each reviewed paper highlights significant

advancements in distributed machine learning, particularly in

CNN model parallelism, their approaches differ substantially in

architecture, performance trade-offs, and real-world

applicability.

Through all of the works, performance is especially used to

evaluate based on metrics like throughput, training acceleration,

power efficiency, inference latency, and memory savings.

Du et al. 2021 achieved that the ARM-based multi-device

was 3.21x faster and used less memory by about 65.3%.

However, it was not tested on GPUs or other types of systems.

Tang and Stefanov (2021a) indicated that they achieved 22–

35% less memory use and gained a throughput of about 18%,

yet devices with uneven loads caused up to 25% of idle time.

Wang, Tong, and Zhi (2023) showed that using FPGA clusters

could parallel accelerate tasks by 2.6 to 4.1x while using about

40% less power. However, once using more than four devices,

synchronization overhead increased by about ~20% per FPGA.

Le et al. (2022b) found that adaptive load balancing increased

training speed by 1.8 to 2.3×, but in some edge-network

scenarios, static scheduling caused latency of >100 ms.

These differences show that, despite the opportunity of

significantly increasing efficiency, challenges with workload

balancing, scalability, and hardware portability still exist.

Tables 1 and 2 highlighting their pros and cons and detailing

practical challenges with measurements.

Table 3 provides a methodological categorization of the

reviewed algorithms, organized by use case, Throughput,

Platform, and algorithm. Showing the difference among the

selected works.

IV. FUNDAMENTALS OF DML ALGORITHMS

The characteristics of data and the performance of algorithms

affect the machine learning solution. The current problem is that

learning algorithms are incapable of utilizing all data for the

specific purpose of learning in a suitable period. Developing a

successful ML model is often difficult and time-consuming,

requiring the selection of a suitable algorithm and the

development of an optimal model architecture. Over large

volumes of data, a single machine’s computational capabilities

are not sufficient to train ML models. Using distributed machine

learning to execute algorithms on clusters, data centers, and

cloud providers is one way to address this challenge (Dehghani

and Yazdanparast, 2023).

ML creates models from training datasets to predict new data

and utilize them. ML models commonly have several

parameters. To reduce prediction error, a machine learning

application usually employs an iterative convergence algorithm,

such as stochastic gradient descent (SGD), to train specific

models. Based on the parameter server, different distributed ML

systems have been proposed to handle several training datasets,

including MxNet, Project Adam, Petuum, TensorFlow, and

SINGA (Sun, 2018).

Table 1: Comparative Analysis of Reviewed Approaches.

Pros Cons Reference

Memory efficiency

Improve accuracy

Limited to multiARM

devices
Du et al. 2021

Vertical

partitioning

Memory and

performance

balance

Bottlenecks when

device is increase

not partition within

layers

Tang and

Stefanov 2021a

Using FPGAs

makes speed

Memory savings

Low power

Overhead grows with

device count
Wang, Tong

and Zhi

2023

Improvements in

throughput and

latency

Lacks model-level

parallelism Sun (2018)

Faster training

Adaptive load

balancing

Use Static

MapReduce

framework make a

limit use in real time

Le et al.

(2022b)

Table 2: Research Challenges in Distributed Machine Learning

Approaches.

Challenges Measurement Reference

Portability to a

various hardware

architecture

Tested only on ARM

CPUs not tested on

GPU.

Du et al.

2021

Improve

management for

those model that

are not balance

On small layers Idle

time up to 25%

Tang and

Stefanov

2021a

Scalability without

overhead when

using more devices

Sync overhead increase

~20% per FPGA with

more than 4 device.

Wang,

Tong and

Zhi 2023

Suitable for edge or

real-time

deployment

>100 ms latency under

edge network.

Le et al.

2022b

 https://doi.org/10.54809/ga11a.2025.003

GALLA p_ISSN: 3081-068X. e_ISSN: 3081-0698X
24

Table 3: Comparative Table.

Use Case Throughput Platform
Algorith

m
Reference

Image
classificati

on

(autonomo
us driving)

+3.21×

Edge

 (multi-
ARM

devices)

DeCNN

Du et al.
(2021)

Object

detection

(YOLOv2)

+18% Edge

Vertical

Tang and

Stefanv

(2021a)

CNN

acceleratio

n

+2.6–

4.1×

Edge /

FPGA

clusters

FPGA Model

Wang,
Tong and Zhi

2023

Image
classificati

on

Moderate
Cloud /
MapRed

uce

FP-DCNN
Le et al.

2022b

Distributed machine learning involves multiple nodes and

systems designed to improve performance, enhance accuracy,

and scale to larger input data sizes. For many algorithms,

increasing the input data size significantly reduces learning

error and is often more efficient than using more complex

techniques. These systems are divided into three main

categories: general-purpose, purpose-built, and database

systems (Galakatos, Crotty and Kraska, 2017).

In these systems, a set of static workers is maintained in case

of failure, and new workers are deployed only on failed

machines. For managing ML clusters, most use Borg or YARN-

like schedulers (Bao et al., 2018). The classification of these

algorithms is shown in Figure 1.

Figure 1: Distributed machine learning algorithms (Dehghani and

Yazdanparast 2023).

A. Distributed deep learning

A neural network is a computational model consisting of

numerous processing units, known as neurons. These neurons

are arranged as interconnected layers, which create the neural

network. Within a network, an input parameter is used to

activate the input neurons, while the neurons in the subsequent

layer are activated by the weight of neurons from the earlier

layer (ÓE et al., 2020). Developers can use more than one GPU

card for training deep neural networks by using distributed deep

learning technology. Various strategies are available for

implementing distributed architectures, depending on the

abstraction of each node— whether at the GPU or server

level—as well as the communication between nodes (Óbudai

Egyetem et al., 2020). Different types of deep learning models

are commonly used, such as convolutional neural networks,

self-coding network models, deep trust network models, and

restricted Boltzmann machine models. So, to overcome the

challenge of training different method categorized which are

model parallelism, data parallelism, pipeline parallelism, and

hybrid parallelism (Wang, Fan and Wang, 2021). Table 1

presents a comprehensive overview of these algorithms.

A.1. Model parallelism

Is a distributed training technique that divides model

parameters among different computing machines or workers.

Each worker is assigned different parameters or layers of the

model by the main machine (Haque et al., 2022).

Memory limitations can be effectively addressed through this

approach (Bian et al., 2021). When the model is too large and

exceeds the capacity of a single machine, it can be divided

across several machines. For instance, one layer can fit into the

memory of one machine, and the process of forward and

backward propagation involves communicating the output from

one worker to another sequentially. Model parallelism is used

only when the model cannot be handled by a single worker, and

it is generally slower to train compared to other approaches

(Hegde and Usmani, 2016). As shown in figure 2 model

partitioning has two types: vertical partitioning (splitting

between neural network layers) and horizontal partitioning

(splitting within layers) (Langer et al., 2020).

Vertical partitioning can be implemented on any deep learning

model because each layer is unaffected by the partition (Langer

et al., 2020). Tang and Stefanov (2021b) identified the main

features of their strategy, noting that item level partitioning

within a layer is not handled by this method. In their study, they

selected a CNN model and partitioned its layers so that each

partition included non-consecutive CNN layers. The memory

required for each partition can be significantly reduced because

 https://doi.org/10.54809/ga11a.2025.003

GALLA p_ISSN: 3081-068X. e_ISSN: 3081-0698X
25

both the storage needed for data and weights, and the data

exchanged between layers, are reduced when dealing with large

partitions. Horizontal partitioning divides the layers into several

partitions, and separate parts of each sample are processed in

parallel using different devices. Each device handles a distinct

part of the sample (Langer et al., 2020). In this strategy, the

weights of each CNN layer are partitioned, while the input data

to each layer is not. Each partition of the CNN model has all

layers of the model, but each layer uses only part of its weight

because the weights are already divided. Communication and

synchronization between different components of a model layer

are important because the output data from each part must be

combined with outputs from other parts of the same layer. The

memory needed for deployment is reduced because the storage

required for weights is decreased, especially when working

with large partitions.

A.2. Data Parallelism

 This strategy distributes the entire dataset among workers,

with each worker executing a single replica of the model and

communicating with other workers to synchronize their

progress at the end of the training process. (Bian et al., 2021).

The fundamental idea is to enhance the overall sample rate by

duplicating the model on different machines, allowing more

information about the loss function to be collected faster, and

enabling backpropagation to be carried out in parallel. Data

parallelism is conceptually performed as follows: first, every

worker downloads the selected model. Next, each worker

utilizes its assigned data in parallel to perform backpropagation.

Finally, the results are combined and integrated to form a new

model (Langer et al., 2020). This technique involves

duplicating the model parameters among all workers. Each

worker, during a single iteration, performs the local gradient or

model updates through sampling several mini batches of data.

Then each node exchanges the results with other nodes. After

that, to obtain the new global model, aggregation and

broadcasting are executed (Haque et al., 2022).

a) Data parallelism can enhance a system’s throughput

through distributed parallel computing, and datasets that cannot

be stored on a single machine can be processed using data

parallelism. However, data parallelism also has some

challenges, such as the overhead of parameter synchronization,

hardware limitations when dealing with large data, and

optimization algorithm constraints (Dehghani and

Yazdanparast, 2023).

 Figure 2: Types of Model Parallelism (Langer et al. 2020).

A.3. Pipeline parallelism

 Pipeline parallelism partitions training tasks for a model into

sequential processing stages. In the context of model

parallelism, this means assigning various stages of model

training to different machines and transferring intermediate

results between machines to reduce training time (Haque et al.,

2022).

Pipeline parallel computing divides the layers of a model into

various stages, with each stage consisting of a consecutive set

of layers. Each stage is assigned to a different GPU, which

performs both forward and backward passes for its layers. By

combining model and data parallelism, pipeline parallelism

enhances the speed of neural network training. This can be done

synchronously, as shown in GPipe (Huang et al., 2019), or

asynchronously, as in PipeDream (Narayanan et al., 2019).

A.4. Hybrid parallelism

 Hybrid parallelism uses data and model parallelism at the

same time (Langer et al., 2020). It optimizes performance by

taking advantage of data parallelism with low overhead for

weak scaling, as well as model parallelism for more compute

resources in strong scaling. Hybrid parallelism may resolve

memory issues caused by data parallelism, as well as

communication and scaling limitations related to model

parallelism (Kahira et al., 2021).

Different research works have shown that hybrid approaches

can outperform current parallel methods in training time and

scalability while maintaining similar accuracy. Table four

shows a comparative overview of research papers which

 https://doi.org/10.54809/ga11a.2025.003

GALLA p_ISSN: 3081-068X. e_ISSN: 3081-0698X
26

organized by the algorithm that they used, year of publication,

datasets used, and evaluation metrics.

B. Comparison with traditional machine learning.

 Researchers are always trying to develop new techniques to

reduce processing times because of the increasing amount of

data and the need for good and fast processing. Deep learning,

primarily using CNN, automates extracting features as well as

learning complicated hierarchical patterns based on new data

such as images. Traditional machine learning operates only on

one machine, which causes several bottlenecks when dealing

with a large scale of data or a complex model. However, in

distributed machine learning several machines participate in

parallelizing the training process, reducing the time that is

required to train models on large datasets. This method includes

different strategies such as data parallelism, which includes

distributing datasets among workers and each of them training

a local model, and model parallelism which involves

distributing a model to the different parts that are training on

different machines. Distributed machine learning allows more

efficient resource utilization, increases fault tolerance as well,

and includes privacy-preserving techniques such as federated

learning. These services make it very suitable for modern

applications that need to process large volumes of data

efficiently.

V. ARCHITECTURE AND FRAMEWORK

The architecture of distributed machine learning affects

performance as well as ease of use. Different frameworks are

available depending on the architecture. These frameworks are

designed to ensure resource usage and handle the complexity of

distributed computing, data management, as well as model

training.

PyTorch provides various tools to facilitate distributed

training, such as DataParallel and DistributedDataParallel. The

first enables single-process multi-thread data parallel training,

which means utilizing multiple GPUs on the same node. The

second enables multiprocess data parallel across GPUs and

nodes, also including Remote Procedure Calls for general

distributed training such as parameter server (Li et al. 2020).

The aim of SlipStream is to provide efficient distributed

training even if a fault occurs. It does not need a spare server

and does not affect the accuracy of the model in contrast to

faultfree training. This framework can tolerate several hardware

failures and guarantee that training throughput remains

proportional to the number of operational servers. SlipStream is

optimized for fast recovery from faults because failures do not

require extensive re-shuffling of model parameters across

functional nodes. Profilers, Executors, and critical Planners are

the key components of SlipStream. When a large training task

is submitted, SlipStream performs a short profiling job to gather

key performance statistics, including the average latency of

micro-batches for both the forward and backward passes,

memory needs for activations and gradients, and the bandwidth

for inter-node communication. The profiling job performs a

small number of training iterations, typically 100 by default,

and normally takes a few minutes to complete. The planner

utilizes these statistics. Runtime Executors use the plans, which

are saved in distributed fault-tolerant storage. SlipStream and

Executor operate together on every GPU node to handle training

plans specified for that specific node (Gandhi et al. 2024).

Horovod is an open-source distributed training framework

for different deep learning frameworks that addresses various

problems. By applying custom reduction to resolve interworker

communication, it requires only a few additional lines of code

from users and enables the distribution of computation across

multiple CPUs via MPI. Paper (Alonso-Monsalve et al. 2021)

identified that Horovod is better than distributed TensorFlow in

terms of the number of images processed per second.

The problems solved by Horovod which identified in this paper

include:

1.The developer must have many GPUs to execute their deep

learning algorithms in a distributed way because the

distribution of training computation concentrates on the GPUs

rather than the CPU.

2.The user is usually required to make significant changes to

their source code to distribute computation based on the

training API.

3.Distributed models often fail to fully take advantage of

available hardware resources because of inter-GPU

communication, which in terms of execution time may result in

significant overhead.

VI. CHALLENGE AND LIMITATION

Unlike machine learning on a single device, distributed

machine learning faces several challenges. This section talks

about the two most common problems, which are

communication overhead and security with unreliable

machines:

1. Communication overhead is one of the System’s

performance bottlenecks. When the number of workers is

 https://doi.org/10.54809/ga11a.2025.003

GALLA p_ISSN: 3081-068X. e_ISSN: 3081-0698X
27

increased, the overall communication overhead is also

increased in a distributed system, regardless of the

synchronization method. This leads to a considerable burden on

the network and makes it difficult to achieve optimal capacity

in a distributed system. Additionally, when the machines are

located in different locations, communication is slowed by -

Table 4: Distributed Deep Learning Technique

the increasing number of machines, so the total time used by

computation will be reduced, hence reducing the training time.

Therefore, it is crucial to minimize communication overhead to

achieve better scalability and speed up training.

Algorithm Year Dataset Evaluation metrics Reference

Model

parallelism

2023 MNIST, CIFAR-10

Speed Increase

(Wang et al. 2023)

Memory Footprint Reduction

Accuracy

Resource Utilization

Power Consumption

2021 ImageNet

Performance Improvement

(Du et al. 2021) Memory Footprint Reduction

Accuracy Improvement

2023
GPT-3 like language model, U-
Net Transformer

Throughput Metric
(Zhuang et al. 2023)

Speedup

2021 Not Mentioned

Speedup

(Bian et al. 2021)

Execution Time

Average Step Time

Weak Scaling Performance

Strong Scaling Performance

Memory and Communication Cost

Data parallelism

2020 Not Mentioned
Latency

(Li et al. 2020)
Scalability

2018 Not Mentioned
Communication Overhead

(Sergeev and Del Balso 2018)
Training Speed

Pipeline
Parallelism

2019
ImageNet-2012, Multilingual

Corpus

Accuracy
(Huang et al. 2019)

Performance

2020
U-Net Memory Benchmark,
AmoebaNet-D Spee Benchmark

Throughput
(Kim et al. 2020)

Memory Usage

2021
Transformer-based

Language Models (GPT-2)

Training Throughput (Shigang Li and Torsten Hoefler

2021) Memory Consumption

Hybrid
Parallelism

2021 CosmoFlow, 3D U-Net

Weak and Strong Scaling

(Oyama et al. 2021) Memory Usage

Prediction Accuracy

2021 2D and 3D Datasets

Accuracy of Analytical Model

(Kahira et al. 2021) Performance and Scalability

Memory/ Computational pressure

 https://doi.org/10.54809/ga11a.2025.003

GALLA p_ISSN: 3081-068X. e_ISSN: 3081-0698X
28

2. Security is one of the most challenging problems in a

distributed system. In some cases, it is complex to identify

identities or workers’ behavior, particularly in federated

learning. It is also possible for some workers to be attacked and

injected with poisoned data, or for the message during

transmission to be manipulated. In the worst situations, some

machines may behave arbitrarily or change their data. Apart

from that, it is also a common problem for workers to have

software or hardware failures, for example, bit-flipping in the

memory or communication media. In this case, it is necessary

to assume that the machines are not reliable and to defend the

system against possible attacks and failures.

CONCLUSION

Distributed machine learning (DML) is a crucial technique

for addressing the complexity, performance demands, and scale

requirements of modern AI applications. By using techniques

such as data, model, pipeline, and hybrid parallelism, DML

enables faster training, handles large datasets, and enhances

resource utilization. This review paper has analyzed different

DML approaches, algorithms, and frameworks, focusing on

their practical applications, limitations, and strengths. While

some challenges remain especially communication overhead

and security vulnerabilities these cause significant limitations

to further advancements. Performance trade-offs often depend

on the context, and improvements in one metric could

compromise another. Researchers should focus on enhancing

the efficiency of inter-node communication, designing and

developing security protocols to protect against vulnerabilities,

and increasing fault tolerance. The combination of edge–cloud

collaborative systems and federated learning offers privacy

protection. Still, a number of problems must be addressed,

including deployment across diverse edge devices, latency

requirements, and ethical issues. By contributing to continued

innovation in these areas, distributed machine learning can

become more robust, scalable, and reliable. Addressing these

limitations provides helpful directions for future research,

which can lead to more secure and efficient DML systems in

fields such as healthcare, large-scale scientific computing, and

autonomous systems.

REFERENCE

Alonso-Monsalve, S. et al. (2021) ‘Analyzing the distributed

training of deep-learning models via data locality’, 2021 29th

Euromicro International Conference on Parallel, Distributed and

Network-BasedProcessing(PDP),pp.117–121.doi:10.1109

/pdp52278. 2021. 00026.

Arora, A. and Basu, N. (2023) ‘Machine learning in modern

healthcare’, International Journal of Advanced Medical Sciences and

Technology,3(4),pp.12–18. doi.org/10.54105/ijamst.D3037.063423

Bao, Y. et al. (2018) ‘Online job scheduling in distributed machine

learning clusters’, in Proceedings of IEEE INFOCOM 2018 – IEEE

Conference on Computer Communications [Preprint].

https://doi.org/10.1109/INFOCOM.2018.8486422

Bian, Z. et al. (2021) ‘Maximizing parallelism in distributed training

for huge neural networks’, arXiv preprint [Preprint].

https://doi.org/10.48550/arXiv.2105.14450

Dehghani, M. and Yazdanparast, Z. (2023) ‘From distributed machine

to distributed deep learning: a comprehensive survey’, Journal of Big

Data, 10(1). https://doi.org/10.1186/s40537-023-00829-x

Du, J. et al. (2021) ‘Model parallelism optimization for distributed

inference via decoupled CNN structure’, IEEE Transactions on

Parallel and Distributed Systems, 32(7), pp. 1665–1676.

https://doi.org/10.1109/TPDS.2020.3041474

Galakatos, A., Crotty, A. and Kraska, T. (2017) ‘Distributed machine

learning’, in Encyclopedia of Database Systems. New York: Springer,

pp. 1–6. https://doi.org/10.1007/978-1-4899-7993-3_80647-1

Gandhi, S. et al. (2024) ‘SlipStream: Adapting pipelines for distributed

training of large DNNs amid failures’, arXiv preprint [Preprint].

Available at: http://arxiv.org/abs/2405.14009

Haque, S. et al. (2022) ‘Communication-efficient data parallel

distributed deep learning: a comprehensive survey’, in IEEE

International Conference on Program Comprehension. IEEE

Computer Society, pp. 36–47.

Hegde, V. and Usmani, S. (2016) ‘Parallel and distributed deep

learning’, Stanford University Technical Report, pp. 1–8.

Huang, Y. et al. (2019) ‘GPipe: Efficient training of giant neural

networks using pipeline parallelism’, in Proceedings of the 33rd

Conference on Neural Information Processing Systems (NeurIPS

2019). Vancouver, Canada.

Kahira, A.N. et al. (2021) ‘An oracle for guiding large-scale

model/hybrid parallel training of convolutional neural networks’, in

Proceedings of the 30th International Symposium on High-

Performance Parallel and Distributed Computing (HPDC 2021). ACM,

pp. 161–173. https://doi.org/10.1145/3431379.3460644

Kim, C. et al. (2020) ‘torchgpipe: On-the-fly pipeline parallelism for

training giant models’, arXiv preprint [Preprint]. Available at:

http://arxiv.org/abs/2004.09910

Langer, M. et al. (2020) ‘Distributed training of deep learning models:

a taxonomic perspective’, IEEE Transactions on Parallel and

Distributed Systems, 31(12), pp. 2802–2818.

https://doi.org/10.1109/TPDS.2020.3003307

Le, Y. et al. (2022) ‘FP-DCNN: a parallel optimization algorithm for

deep convolutional neural networks’, Journal of Supercomputing,

78(3), pp. 3791–3813. https://doi.org/10.1007/s11227-021-04012-y

Li, S. et al. (2020) ‘PyTorch distributed: experiences on accelerating

data parallel training’, arXiv preprint [Preprint]. Available at:

http://arxiv.org/abs/2006.15704

Maboud, Y.E. et al. (2024) ‘Accelerating recommender model training

by dynamically skipping stale embeddings’, arXiv preprint [Preprint].

Available at: http://arxiv.org/abs/2404.04270

https://doi.org/10.54105/ijamst.D3037.063423
https://doi.org/10.1109/INFOCOM.2018.8486422
https://doi.org/10.48550/arXiv.2105.14450
https://doi.org/10.1186/s40537-023-00829-x
https://doi.org/10.1109/TPDS.2020.3041474
https://doi.org/10.1007/978-1-4899-7993-3_80647-1
http://arxiv.org/abs/2405.14009
https://doi.org/10.1145/3431379.3460644
http://arxiv.org/abs/2004.09910
https://doi.org/10.1109/TPDS.2020.3003307
https://doi.org/10.1007/s11227-021-04012-y
http://arxiv.org/abs/2006.15704
http://arxiv.org/abs/2404.04270

 https://doi.org/10.54809/ga11a.2025.003

GALLA p_ISSN: 3081-068X. e_ISSN: 3081-0698X
29

Narayanan, D. et al. (2019) ‘PipeDream: generalized pipeline

parallelism for DNN training’, in Proceedings of the 27th ACM

Symposium on Operating Systems Principles (SOSP 2019). ACM, pp.

1–15. https://doi.org/10.1145/3341301.3359646

Óbudai Egyetem, IEEE Hungary Section and IEEE Industrial

Electronics Society (2020) ‘Parallel and distributed training of deep

neural networks: a brief overview’, in Proceedings of the IEEE 24th

International Conference on Intelligent Engineering Systems (INES

2020). Reykjavík, Iceland, p. 231.

Oyama, Y. et al. (2021) ‘The case for strong scaling in deep learning:

training large 3D CNNs with hybrid parallelism’, IEEE Transactions

on Parallel and Distributed Systems, 32(7), pp. 1641–1652.

https://doi.org/10.1109/TPDS.2020.3047974

Sergeev, A. and Del Balso, M. (2018) ‘Horovod: fast and easy

distributed deep learning in TensorFlow’, arXiv preprint [Preprint].

https://doi.org/10.48550/arXiv.1802.05799

Li, S. and Hoefler, T. (2021) ‘Chimera: efficiently training large-scale

neural networks with bidirectional pipelines’, arXiv preprint

[Preprint]. Available at: https://arxiv.org/abs/2107.06925

Sun, P. (2018) Performance optimization for distributed machine

learning and graph processing at scale over virtualized infrastructure.

PhD thesis. Nanyang Technological University.

https://doi.org/10.32657/10356/73229

Tang, E. and Stefanov, T. (2021) ‘Low-memory and high-performance

CNN inference on distributed systems at the edge’, in ACM

International Conference Proceeding Series. ACM.

https://doi.org/10.1145/3492323.3495629

Verbraeken, J. et al. (2020) ‘A Survey on Distributed Machine

Learning’, ACM Computing Surveys. Association for Computing

Machinery. https://doi.org// 10.1145/3377454.

Wang, J., Tong, W. and Zhi, X. (2023) ‘Model Parallelism

Optimization for CNN FPGA Accelerator’, Algorithms The 2023

MDPI, 16(2). https://doi.org 10.3390/a16020110.

Wang, Pin, Fan, E. and Wang, Peng (2021) ‘Comparative analysis of

image classification algorithms based on traditional machine learning

and deep learning’, Pattern Recognition Letters, 141, pp. 61–67.

https://doi. org/10.1016/j.patrec.2020.07.042.

Zhuang, Y. et al. (2023) ‘On Optimizing The Communication of Model

Parallelism’, Proceedings of Machine Learning and Systems, 5, pp.

526–540.

https://doi.org/10.1145/3341301.3359646
https://doi.org/10.1109/TPDS.2020.3047974
https://doi.org/10.48550/arXiv.1802.05799
https://arxiv.org/abs/2107.06925
https://doi.org/10.32657/10356/73229
https://doi.org/10.1145/3492323.3495629
https://doi.org/
https://doi.org/
https://doi/

