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Abstract — Artificial intelligence has expanded significantly
over the last decade due to growing user demand and has
achieved major advancements in managing complex tasks.
Processing and analyzing this large volume of data is time-
consuming and requires substantial computational
resources. To address these limitations, distributed machine
learning (DML) has emerged as an effective solution,
enabling parallelization of tasks by distributing data,
models, or both across multiple servers. This review paper
thoroughly examines various strategies and methodologies
used in DML, with a particular emphasis on data
methods

parallelism and model parallelism. These

significantly enhance scalability and computational
efficiency, which in turn accelerate AI advancements in
sectors such as autonomous driving, healthcare, and
recommendation systems. Additionally, this paper provides
an extensive overview of key DML algorithms and
frameworks, exploring their

applications, and limitations. Furthermore, it identifies and

advantages, practical
examines important challenges such as security concerns
and communication overhead and offers recommendations
for future research to develop DML systems that are more
reliable, scalable, and efficient.
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I. INTRODUCTION

The rapid advancement of digital technologies, particularly
the Internet of Things (IoT) and enhanced internet
infrastructures, has resulted in exceptional growth in both data
volume and complexity (Le et al., 2022a). As a result, methods
for artificial intelligence (AI) and machine learning (ML)
techniques have become essential tools for gaining knowledge
and assisting in decision-making in various fields. Traditional
machine learning techniques primarily depend on single-
machine architectures, which experience significant drawbacks
such as computational bottlenecks, insufficient scalability, and
insufficient resources for effectively processing large datasets.

A large number of machine learning (ML) algorithms are
being used to classify information and create decision-making
systems when the complexity of the issue makes an algorithmic
solution difficult. Due to this, the amount of training data
needed for complex applications may rapidly reach terabytes,
and solution designers are often required to adopt distributed
systems because of the lengthy duration of training the models.
This increases parallelization and overall, I/O bandwidth. To
make these kinds of datasets available for use as training data
in machine learning tasks, it is necessary to choose and develop
algorithms that facilitate parallel processing, data distribution,
and the ability to resist errors (Verbracken et al., 2020).

Training machine learning models usually requires a lot of
time and intensive resources, especially in the case of having an
enormous dataset with many features. The basic difficulty
encountered by an ML cluster operator is how to optimize the
scheduling of submitted training tasks to maximize server
resources and speed up training completion (Bao et al., 2018).
Distributed training is crucial because it enables researchers and
data analysts to deal with large datasets that would be too much
for a single machine to handle without optimizing the features.

Despite previous studies having precisely explored different
DML techniques, they often lack extensive analyses between
different parallelization strategies and generally fail to
thoroughly address issues related to security vulnerabilities and
communication overhead. This review paper covers these gaps
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by thoroughly reviewing the key DML strategies, particularly
data  parallelism and model parallelism, providing
comprehensive details about their strengths and drawbacks.

The primary objectives of this review are to present a
comprehensive overview of crucial DML algorithms and
frameworks, analyze their practical uses and essential
limitations, as well as examine current challenges, including
communication and security issues. Additionally, this paper
highlights future research directions, recommending the
development of more accurate, scalable, and secure DML
systems. Through this comprehensive study, it provides
important guidance for researchers who are aiming to utilize
distributed machine learning to handle complex data challenges
across sectors such as recommendation systems, autonomous
driving, and healthcare.

The review article is organized into several sections. A brief
introduction to the survey is given in the first section. The
second section discusses the literature review. The next section
discusses the background theory of Distributed Machine
Learning. The paper concludes with a summary of findings and
recommendations.

II. RELATED WORK

Du et al., 2021, the researchers provided DeCNN, a more
efficient inference method that maximizes model parallelism
for distributed inference on consumer devices by using a
decoupled CNN structure. DeCNN is a new and innovative
system that comprises three different schemes. Scheme 1
optimizes at the structural level. It decouples the basic CNN
structure for model parallelism by making use of group
convolution and channel shuffling. Partition-level optimization
is done in Scheme 2. The convolutional layers are divided using
a channel group technique, and the fully connected layers are
divided using an inputbased approach, which further reveals a
high degree of parallelism. Scheme 3 optimizes at the
communication level. To improve efficiency and robustness,
particularly in cases of poor network connections, it employs
inter-sample parallelism to hide communications. Using an
ImageNet classification job, they assess how well DeCNN
performs on a distributed multiARM architecture. Specifically,
their results show that DeCNN uses a lower memory footprint
by 65.3% and expedites the inference of large-scale ResNet-50
by 3.21x when employing 1-4 devices, while improving
accuracy by 1.29%.

Tang and Stefanov, 2021, authors offered a unique
partitioning strategy called the Vertical Partitioning approach,
along with a novel methodology, in order to effectively use their
partitioning approach for CNN model inference on a distributed
system at the edge. This study presents a comparison between
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their experimental findings on the YOLOv2 CNN model and
the results produced by three current approaches. It also
highlights the benefits of each methodology in terms of overall
system performance and the amount of memory required per
edge device. Additionally, their experimental findings on
various typical CNN models demonstrate how their unique
technique, which makes use of their partitioning strategy, can
enable CNN inference while simultaneously improving overall
system performance and using a very small amount of memory
per edge device. An important factor to consider is thatif a CNN
partition contains just one CNN layer with a high memory
requirement, the overall system performance and memory
savings per device will be heavily influenced by this specific
bottleneck layer. This is because the partitioning strategy in this
paper does not divide individual CNN layers. However, as the
number of layers in a CNN model increases, the memory saving
rate per device and the overall system performance speedup
have the potential to continue improving. This is especially true
in a distributed system with a larger number of edge devices, as
their methodology allows for the CNN model to be divided into
multiple partitions, ensuring that no single layer becomes a
bottleneck in the system. Based on the experimental results for
YOLOV2, this paper concludes that their partitioning strategy
and methodology can successfully enable CNN inference on a
fully distributed system at the edge. This approach requires less
memory per edge device and/ or offers higher overall system
performance compared to other existing partitioning strategies.

Wang, Tong, and Zhi, 2023, introduced a new approach to
model parallelism, which involves separating the CNN
structure using group convolution and implementing a unique
channel shuffling mechanism. The method in this paper can
reduce each device’s memory footprint while eliminating inter-
device synchronization. The authors created a parallel FPGA
accelerator for the well-known CNN model ShuffleNet by using
the suggested model parallelism technique. Further
optimization was done on this accelerator to fully utilize the
hardwarelevel parallelism of the FPGA, including features like
kernel vectorization and aggregate reads. The research used
ShuffleNet to conduct tests on two FPGA boards, each equipped
with an Intel Arria 10 GX1150 and 16GB DDR3 memory.
According to the testing findings, ShuffleNet demonstrated a
1.42-fold improvement in speed and a 34% reduction in
memory use while using two devices, as compared to its non-
parallel version. This study presents the empirical impact of
CNN model parallelism while using two FPGAs. This approach
may be extended to include other devices and perform
operations on multiple devices simultaneously. Nevertheless,
having numerous devices generally produces better outcomes.
An increase in the number of devices was able to decrease the
network layer calculation time in a roughly linear proportion to
the speed-up ratio, but it was not possible to reduce the time
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required for device synchronization. As a result, the device
count will become more important in determining the speed-up
ratio rather than the network computation time. This article used
two FPGAs to illustrate the experimental impact of CNN model
parallelism. Naturally, additional devices could be added and
controlled using this approach. However, increasing the number
of devices will cause the channel to exchange excessive
amounts of data, which might have the opposite effect. Using
these strategies, the experimental results demonstrated that the
parallel ShuffleNet FPGA accelerator technique used in this
work achieved a high level of model parallelism while
maintaining accuracy. It produced a 1.42x increase in
performance, a power usage of around 20 W, and a 34%
decrease in memory footprint when two FPGAs were used.
Additionally, it is expected that the experimental results will be
most suitable when there are three to four devices.

Sun, 2018, focused on separate concepts: first, it aims to
enhance the cluster’s shared resource usage for many
distributed MLGP workloads. Employing a cluster management
system (CMS) to operate many distributed MLGP applications
in a single cluster is becoming popular among businesses. Poor
cluster usage results from existing CMSs’ inability to assign
more than a static partition of the cluster to each application.
This work proposes a new content management system (CMS)
called Dorm to address this issue. It partitions a cluster using
virtualization techniques, runs a single application per partition,
and can dynamically resize each partition at runtime to meet
various performance constraints and achieve high cluster
utilization. Comprehensive performance analyses have shown
that Dorm has the potential to boost cluster utilization by as
much as 2.32x. Secondly, this study enhances DFSs’ metadata
lookup performance. Distributed hash tables (DHT) are often
used by existing DFSs to maintain their metadata servers.
Clients must find the required metadata item using a lookup
service before executing a metadata operation. High delay and
decreased metadata operation performance might result from
the lookup process. To solve this issue, this work creates
MetaFlow, a brand-new metadata lookup service. By mapping
the actual network topology to a logical B-tree, MetaFlow
creates suitable flow tables for SDN-enabled switches and uses
software-defined networking (SDN) methods to move metadata
searches to the network layer. Comprehensive performance
analyses have shown that, compared to DHTbased methods,
MetaFlow might boost system throughput by a ratio of up to 6.5
and decrease system latency for metadata management by a
factor of up to 5. Third, by using the Parameter Server (PS)
architecture, this study reduces the communication cost
associated with distributed machine learning (ML). The PS
architecture consists of a set of server nodes that store globally
shared parameters and a set of worker nodes that execute
dataparallel computing. There would be a lot of communication
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overhead since each worker node would continuously gather
parameters from server nodes and submit changes to them. To
ackle this issue, ParameterFlow, a communication layer for the
PS framework with a dynamic value-bounded filter (DVF) and
an update-centered communication (UCC) architecture, was
devised in this study. To facilitate data flow between worker
nodes and server nodes, UCC presents a broadcast/push
architecture. By selectively deleting updates for network
transmission, DVF can directly cut network traffic and
communication time. According to experiments, PF may
accelerate widely used distributed machine learning
applications by up to 4.3x when compared to the traditional PS
framework. Finally, this work allows large-scale graph
processing with excellent performance on small clusters with
limited memory.

Le et al., 2022b, provided an optimization strategy for deep
convolutional neural networks (FPDCNNSs). Initially, redundant
parameters are trimmed using a pruning technique based on
Taylor’s loss (FMPTL), which not only compresses the
structure of the DCNN but also lowers the computational cost
of training. The next technique described is a glowworm swarm
optimization method based on an information-sharing strategy
(IFAS), which enhances parameter optimization capability by
modifying weight initialization. Ultimately, an equitable
distribution of data is achieved, and the cluster’s parallel
performance is enhanced by the use of a dynamic load-
balancing approach based on parallel computing entropy
(DLBPCE). Experiments presented in this study demonstrate
that this technique achieves both a faster processing speed and
a lower computational cost for network training when compared
to previous parallelized algorithms. An empirical comparison
was undertaken to evaluate the performance of FP-DCNN,
MRCNN, BS-CNN, and NFP-DCNN (a variation of FP-DCNN
without model compression). The evaluation was based on four
datasets: CIFAR-10, Fashion-MNIST, PatchCamelyon, and
EMNIST-Bymerge. When processing the CIFAR-10 dataset,
the FP-DCNN algorithm takes 52.72% of the time to execute
compared to BS-CNN, 35.98% compared to MR-CNN, and
40.23% compared to NFP-DCNN. While the other comparison
techniques increase geometrically, the FP-DCNN running time
increases only slightly as the amount of data increases. In
particular, the percentage of FPDCNN running time is 45.14%
of BS-CNN, 34.94% of MR-CNN, and 31.85% of NFPDCNN
when working with larger datasets like EMNIST-Bymerge. The
primary cause of the reduction is that the FP-DCNN method
pretrains the network before classification, which lowers the
algorithm’s total execution time while simultaneously reducing
the computing cost of training. The speed-up ratio, which is
defined as follows: Speed-up = Ts/Tp, is often used as an
indicator to assess the algorithm’s parallel performance, where
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Tp and Ts stand for the algorithm’s execution times in parallel
and serial cases, respectively.

III. CRITICAL ANALYSIS

Although each reviewed paper highlights significant
advancements in distributed machine learning, particularly in
CNN model parallelism, their approaches differ substantially in
architecture, performance trade-offs, and real-world
applicability.

Through all of the works, performance is especially used to
evaluate based on metrics like throughput, training acceleration,
power efficiency, inference latency, and memory savings.

Du et al. 2021 achieved that the ARM-based multi-device
was 3.21x faster and used less memory by about 65.3%.
However, it was not tested on GPUs or other types of systems.
Tang and Stefanov (2021a) indicated that they achieved 22—
35% less memory use and gained a throughput of about 18%,
yet devices with uneven loads caused up to 25% of idle time.
Wang, Tong, and Zhi (2023) showed that using FPGA clusters
could parallel accelerate tasks by 2.6 to 4.1x while using about
40% less power. However, once using more than four devices,
synchronization overhead increased by about ~20% per FPGA.
Le et al. (2022b) found that adaptive load balancing increased
training speed by 1.8 to 2.3%, but in some edge-network
scenarios, static scheduling caused latency of >100 ms.

These differences show that, despite the opportunity of
significantly increasing efficiency, challenges with workload
balancing, scalability, and hardware portability still exist.
Tables 1 and 2 highlighting their pros and cons and detailing
practical challenges with measurements.

Table 3 provides a methodological categorization of the
reviewed algorithms, organized by use case, Throughput,
Platform, and algorithm. Showing the difference among the
selected works.

IV. FUNDAMENTALS OF DML ALGORITHMS

The characteristics of data and the performance of algorithms
affect the machine learning solution. The current problem is that
learning algorithms are incapable of utilizing all data for the
specific purpose of learning in a suitable period. Developing a
successful ML model is often difficult and time-consuming,
requiring the selection of a suitable algorithm and the
development of an optimal model architecture. Over large
volumes of data, a single machine’s computational capabilities
are not sufficient to train ML models. Using distributed machine
learning to execute algorithms on clusters, data centers, and
cloud providers is one way to address this challenge (Dehghani
and Yazdanparast, 2023).

ML creates models from training datasets to predict new data
and utilize them. ML models commonly have several
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parameters. To reduce prediction error, a machine learning
application usually employs an iterative convergence algorithm,
such as stochastic gradient descent (SGD), to train specific
models. Based on the parameter server, different distributed ML
systems have been proposed to handle several training datasets,
including MxNet, Project Adam, Petuum, TensorFlow, and
SINGA (Sun, 2018).

Table 1: Comparative Analysis of Reviewed Approaches.

Pros Cons Reference
Memory efficiency L1m1ted to multiARM Du et al. 2021
Improve accuracy  devices
Vert} c?al . Bottlenecks when
partitioning Lo
Memor and device is increase Tang and

M not partition within Stefanov 2021a
performance lavers
balance 4
Using FPGAs ngrhead grows with Wang, Tong
makes speed device count .

. and Zhi
Memory savings
2023
Low power
Improvementsin  Lacks model-level
throughput and parallelism Sun (2018)
latency
Faster trainin Use Static
Adaptive loact(ig MapReduce Le et al.
P . framework make a (2022b)

balancing

limit use in real time

Table 2: Research Challenges in Distributed Machine Learning
Approaches.

Challenges Measurement Reference
Portability to a Tested only on ARM
. Du et al.
various hardware CPUs not tested on h001
architecture GPU.
Improve
T d
management for On small layers Idle ang atl
. Stefanov
those model that time up to 25%
2021a
are not balance
Scalability without ~ Sync overhead increase Wang,
overhead when ~20% per FPGA with ~ Tong and
using more devices more than 4 device. Zhi 2023
rSeu;lt ili)rlneefor edge or >100 ms latency under Le et al.
- edge network. 2022b
deployment
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Table 3: Comparative Table.

Use Case  Throughput Platform ﬁlgorlth Reference
Image
classificati Edge.
(multi- Du et al.
on +3.21x%
ARM DeCNN (2021)
(autonomo devi
. evices)
us driving)
Object Tang and
detection +18% Edge . Stefanv
(YOLOV2) Vertical = 9021a)
C1NN o 26 I;g%‘ieA/ Tong and Zhi
acceleratio 4.1 FPGA Model ong an i
n clusters 2023
Image Cloud / Le ot al
classificati Moderate MapRed FP-DCNN 2022b
on uce

Distributed machine learning involves multiple nodes and
systems designed to improve performance, enhance accuracy,
and scale to larger input data sizes. For many algorithms,
increasing the input data size significantly reduces learning
error and is often more efficient than using more complex
techniques. These systems are divided into three main
categories: general-purpose, purpose-built, and database
systems (Galakatos, Crotty and Kraska, 2017).

In these systems, a set of static workers is maintained in case
of failure, and new workers are deployed only on failed
machines. For managing ML clusters, most use Borg or YARN-
like schedulers (Bao et al., 2018). The classification of these
algorithms is shown in Figure 1.

Distibarad

Reinforcemstn Leaming

Ceomsenzus based t bistributed Hoasting
Algosithm *. -
Clusterring - Lo il —» 5 Classification -
l ] lMachinu Luamilq]
Distributed K-means l Distributed SVM
Distributed

» | Hybrid Parallelization

Data Parabedism ] «

l Modal Paralladsm J lmm»q m-.an

l Deep Leaming I
v P

Figure 1: Distributed machine learning algorithms (Dehghani and
Yazdanparast 2023).
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A. Distributed deep learning

A neural network is a computational model consisting of
numerous processing units, known as neurons. These neurons
are arranged as interconnected layers, which create the neural
network. Within a network, an input parameter is used to
activate the input neurons, while the neurons in the subsequent
layer are activated by the weight of neurons from the earlier
layer (OE et al., 2020 ). Developers can use more than one GPU
card for training deep neural networks by using distributed deep
learning technology. Various strategies are available for
implementing distributed architectures, depending on the
abstraction of each node— whether at the GPU or server
level—as well as the communication between nodes (Obudai
Egyetem et al., 2020). Different types of deep learning models
are commonly used, such as convolutional neural networks,
self-coding network models, deep trust network models, and
restricted Boltzmann machine models. So, to overcome the
challenge of training different method categorized which are
model parallelism, data parallelism, pipeline parallelism, and
hybrid parallelism (Wang, Fan and Wang, 2021). Table 1
presents a comprehensive overview of these algorithms.

A.1. Model parallelism

Is a distributed training technique that divides model
parameters among different computing machines or workers.
Each worker is assigned different parameters or layers of the
model by the main machine (Haque et al., 2022).

Memory limitations can be effectively addressed through this
approach (Bian et al., 2021). When the model is too large and
exceeds the capacity of a single machine, it can be divided
across several machines. For instance, one layer can fit into the
memory of one machine, and the process of forward and
backward propagation involves communicating the output from
one worker to another sequentially. Model parallelism is used
only when the model cannot be handled by a single worker, and
it is generally slower to train compared to other approaches
(Hegde and Usmani, 2016). As shown in figure 2 model
partitioning has two types: vertical partitioning (splitting
between neural network layers) and horizontal partitioning
(splitting within layers) (Langer et al., 2020).

Vertical partitioning can be implemented on any deep learning
model because each layer is unaffected by the partition (Langer
et al., 2020). Tang and Stefanov (2021b) identified the main
features of their strategy, noting that item level partitioning
within a layer is not handled by this method. In their study, they
selected a CNN model and partitioned its layers so that each
partition included non-consecutive CNN layers. The memory

required for each partition can be significantly reduced because
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both the storage needed for data and weights, and the data
exchanged between layers, are reduced when dealing with large
partitions. Horizontal partitioning divides the layers into several
partitions, and separate parts of each sample are processed in
parallel using different devices. Each device handles a distinct
part of the sample (Langer et al., 2020). In this strategy, the
weights of each CNN layer are partitioned, while the input data
to each layer is not. Each partition of the CNN model has all
layers of the model, but each layer uses only part of its weight
because the weights are already divided. Communication and
synchronization between different components of a model layer
are important because the output data from each part must be
combined with outputs from other parts of the same layer. The
memory needed for deployment is reduced because the storage
required for weights is decreased, especially when working
with large partitions.

A.2. Data Parallelism

This strategy distributes the entire dataset among workers,
with each worker executing a single replica of the model and
communicating with other workers to synchronize their
progress at the end of the training process. (Bian et al., 2021).
The fundamental idea is to enhance the overall sample rate by
duplicating the model on different machines, allowing more
information about the loss function to be collected faster, and
enabling backpropagation to be carried out in parallel. Data
parallelism is conceptually performed as follows: first, every
worker downloads the selected model. Next, each worker
utilizes its assigned data in parallel to perform backpropagation.
Finally, the results are combined and integrated to form a new
model (Langer et al., 2020). This technique involves
duplicating the model parameters among all workers. Each
worker, during a single iteration, performs the local gradient or
model updates through sampling several mini batches of data.
Then each node exchanges the results with other nodes. After
that, to obtain the new global model, aggregation and
broadcasting are executed (Haque et al., 2022).

a) Data parallelism can enhance a system’s throughput
through distributed parallel computing, and datasets that cannot
be stored on a single machine can be processed using data
parallelism. However, data parallelism also has some
challenges, such as the overhead of parameter synchronization,
hardware limitations when dealing with large data, and
optimization  algorithm  constraints  (Dehghani  and
Yazdanparast, 2023).
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Figure 2: Types of Model Parallelism (Langer et al. 2020).

A.3. Pipeline parallelism

Pipeline parallelism partitions training tasks for a model into
sequential processing stages. In the context of model
parallelism, this means assigning various stages of model
training to different machines and transferring intermediate
results between machines to reduce training time (Haque et al.,
2022).

Pipeline parallel computing divides the layers of a model into
various stages, with each stage consisting of a consecutive set
of layers. Each stage is assigned to a different GPU, which
performs both forward and backward passes for its layers. By
combining model and data parallelism, pipeline parallelism
enhances the speed of neural network training. This can be done
synchronously, as shown in GPipe (Huang et al., 2019), or
asynchronously, as in PipeDream (Narayanan et al., 2019).

A.4. Hybrid parallelism

Hybrid parallelism uses data and model parallelism at the
same time (Langer et al., 2020). It optimizes performance by
taking advantage of data parallelism with low overhead for
weak scaling, as well as model parallelism for more compute
resources in strong scaling. Hybrid parallelism may resolve
memory issues caused by data parallelism, as well as
communication and scaling limitations related to model
parallelism (Kahira et al., 2021).

Different research works have shown that hybrid approaches
can outperform current parallel methods in training time and
scalability while maintaining similar accuracy. Table four
shows a comparative overview of research papers which
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organized by the algorithm that they used, year of publication,
datasets used, and evaluation metrics.

B.  Comparison with traditional machine learning.

Researchers are always trying to develop new techniques to
reduce processing times because of the increasing amount of
data and the need for good and fast processing. Deep learning,
primarily using CNN, automates extracting features as well as
learning complicated hierarchical patterns based on new data
such as images. Traditional machine learning operates only on
one machine, which causes several bottlenecks when dealing
with a large scale of data or a complex model. However, in
distributed machine learning several machines participate in
parallelizing the training process, reducing the time that is
required to train models on large datasets. This method includes
different strategies such as data parallelism, which includes
distributing datasets among workers and each of them training
a local model, and model parallelism which involves
distributing a model to the different parts that are training on
different machines. Distributed machine learning allows more
efficient resource utilization, increases fault tolerance as well,
and includes privacy-preserving techniques such as federated
learning. These services make it very suitable for modern
applications that need to process large volumes of data
efficiently.

V. ARCHITECTURE AND FRAMEWORK

The architecture of distributed machine learning affects
performance as well as ease of use. Different frameworks are
available depending on the architecture. These frameworks are
designed to ensure resource usage and handle the complexity of
distributed computing, data management, as well as model
training.

PyTorch provides various tools to facilitate distributed
training, such as DataParallel and DistributedDataParallel. The
first enables single-process multi-thread data parallel training,
which means utilizing multiple GPUs on the same node. The
second enables multiprocess data parallel across GPUs and
nodes, also including Remote Procedure Calls for general
distributed training such as parameter server (Li et al. 2020).

The aim of SlipStream is to provide efficient distributed
training even if a fault occurs. It does not need a spare server
and does not affect the accuracy of the model in contrast to
faultfree training. This framework can tolerate several hardware
failures and guarantee that training throughput remains
proportional to the number of operational servers. SlipStream is

GALLAp_ISSN: 3081-068X. ¢_ISSN: 3081-0698X

26

https://doi.org/10.54809/ga11a.2025.003

optimized for fast recovery from faults because failures do not
require extensive re-shuffling of model parameters across
functional nodes. Profilers, Executors, and critical Planners are
the key components of SlipStream. When a large training task
is submitted, SlipStream performs a short profiling job to gather
key performance statistics, including the average latency of
micro-batches for both the forward and backward passes,
memory needs for activations and gradients, and the bandwidth
for inter-node communication. The profiling job performs a
small number of training iterations, typically 100 by default,
and normally takes a few minutes to complete. The planner
utilizes these statistics. Runtime Executors use the plans, which
are saved in distributed fault-tolerant storage. SlipStream and
Executor operate together on every GPU node to handle training
plans specified for that specific node (Gandhi et al. 2024).

Horovod is an open-source distributed training framework
for different deep learning frameworks that addresses various
problems. By applying custom reduction to resolve interworker
communication, it requires only a few additional lines of code
from users and enables the distribution of computation across
multiple CPUs via MPI. Paper (Alonso-Monsalve et al. 2021)
identified that Horovod is better than distributed TensorFlow in
terms of the number of images processed per second.

The problems solved by Horovod which identified in this paper
include:

1.The developer must have many GPUs to execute their deep
learning algorithms in a distributed way because the
distribution of training computation concentrates on the GPUs
rather than the CPU.

2.The user is usually required to make significant changes to
their source code to distribute computation based on the
training API.

3.Distributed models often fail to fully take advantage of
available hardware resources because of inter-GPU
communication, which in terms of execution time may result in
significant overhead.

VI. CHALLENGE AND LIMITATION

Unlike machine learning on a single device, distributed
machine learning faces several challenges. This section talks

about the two most common problems, which are
communication overhead and security with unreliable
machines:

1. Communication overhead is one of the System’s

performance bottlenecks. When the number of workers is
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increased, the overall communication overhead is also
increased in a distributed system, regardless of the
synchronization method. This leads to a considerable burden on
the network and makes it difficult to achieve optimal capacity
in a distributed system. Additionally, when the machines are
located in different locations, communication is slowed by -

Table 4: Distributed Deep Learning Technique

https://doi.org/10.54809/ga11a.2025.003

the increasing number of machines, so the total time used by
computation will be reduced, hence reducing the training time.
Therefore, it is crucial to minimize communication overhead to
achieve better scalability and speed up training.

Algorithm Year

Dataset

Evaluation metrics

Reference

2023

2021

Model
parallelism 2023

2021

2020

Data parallelism

MNIST, CIFAR-10

ImageNet

GPT-3 like language model, U-
Net Transformer

Not Mentioned

Not Mentioned

Speed Increase

Memory Footprint Reduction
Accuracy

Resource Utilization

Power Consumption
Performance Improvement
Memory Footprint Reduction
Accuracy Improvement
Throughput Metric

Speedup

Speedup

Execution Time

Average Step Time
Weak Scaling Performance

Strong Scaling Performance
Memory and Communication Cost

Latency
Scalability

Communication Overhead

2018 Not Mentioned o
Training Speed
2019 ImageNet-2012, Multilingual Accuracy
Corpus Performance
Pipeline 2020 U-Net Memory Benchmark, Throughput
Parallelism AmoebaNet-D Spee Benchmark Memory Usage
2021 Transformer-based Training Throughput
Language Models (GPT-2) Memory Consumption
Weak and Strong Scaling
2021 CosmoFlow, 3D U-Net Memory Usage
Hybrid Prediction Accuracy
Parallelism Accuracy of Analytical Model
2021 2D and 3D Datasets Performance and Scalability

Memory/ Computational pressure

(Wang et al. 2023)

(Du et al. 2021)

(Zhuang et al. 2023)

(Bian et al. 2021)

(Li et al. 2020)

(Sergeev and Del Balso 2018)

(Huang et al. 2019)

(Kim et al. 2020)

(Shigang Li and Torsten Hoefler
2021)

(Oyama et al. 2021)

(Kahira et al. 2021)
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2. Security is one of the most challenging problems in a
distributed system. In some cases, it is complex to identify
identities or workers’ behavior, particularly in federated
learning. It is also possible for some workers to be attacked and
injected with poisoned data, or for the message during
transmission to be manipulated. In the worst situations, some
machines may behave arbitrarily or change their data. Apart
from that, it is also a common problem for workers to have
software or hardware failures, for example, bit-flipping in the
memory or communication media. In this case, it is necessary
to assume that the machines are not reliable and to defend the
system against possible attacks and failures.

CONCLUSION

Distributed machine learning (DML) is a crucial technique
for addressing the complexity, performance demands, and scale
requirements of modern Al applications. By using techniques
such as data, model, pipeline, and hybrid parallelism, DML
enables faster training, handles large datasets, and enhances
resource utilization. This review paper has analyzed different
DML approaches, algorithms, and frameworks, focusing on
their practical applications, limitations, and strengths. While
some challenges remain especially communication overhead
and security vulnerabilities these cause significant limitations
to further advancements. Performance trade-offs often depend
on the context, and improvements in one metric could
compromise another. Researchers should focus on enhancing
the efficiency of inter-node communication, designing and
developing security protocols to protect against vulnerabilities,
and increasing fault tolerance. The combination of edge—cloud
collaborative systems and federated learning offers privacy
protection. Still, a number of problems must be addressed,
including deployment across diverse edge devices, latency
requirements, and ethical issues. By contributing to continued
innovation in these areas, distributed machine learning can
become more robust, scalable, and reliable. Addressing these
limitations provides helpful directions for future research,
which can lead to more secure and efficient DML systems in
fields such as healthcare, large-scale scientific computing, and
autonomous systems.
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